

Vladimir N. Litvinenko for eRHIC team

Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA

Linac-ring eRHIC

Daniel Anderson¹, <u>Ilan Ben-Zvi^{1,2,4}</u>, Rama Calaga^{1,4}, Xiangyun Chang^{1,4}, Manouchehr Farkhondeh³, Alexei Fedotov¹, Jörg Kewisch¹, <u>Vladimir Litvinenko</u>,^{1,4}, William Mackay¹, Christoph Montag¹, Thomas Roser¹, Vitaly Yakimenko²

- (1)Collider-Accelerator
- (2) Physics Departments of BNL,
- ⁽³⁾Bates Lab, MIT,
- (4) Department of Physics and Astronomy, SUNY @ Stony Brook

http://www.agsrhichome.bnl.gov/eRHIC/

Outline

- · Layout(s) and Design(s), ERL Detector without quads!
- CM energies
- Beam parameters
- Luminosity: the values and the limits
- Polarization: the gun and spin transparency
- Lattice issues
- Conclusion

Center-of-mass energies for linac-ring eRHIC

Energy, GeV proton	26	50	100	250
electrons c.m.				
1	10.20	14.14	20.00	31.62
2	14.42	20.00	28.28	44.72
5	22.80	31.62	44.72	70.71
10	32.25	44.72	63.25	100.00
20	45.61	63.25	89.44	141.42
30	55.86	77.46	109.54	173.21

Energy, GeV Au/u e c.m.	50	100
1	14.14	20.00
2	20.00	28.28
5	31.62	44.72
10	44.72	63.25
20	63.25	89.44
30	77.46	109.54

CM vs. Luminosity

eRHIC

- Variable beam energy
- Polarizes electrons and protons
- p-He³-U ion beams
- Light ion polarization
- Large luminosity

Goals and Targets

- This scheme meets or exceeds the requirements for the collider specified in the physics program for eRHIC:
 - Electron beams colliding with beams of protons or light and heavy nuclei
 - Wide range of collision energies (E_{cm}/nucleon from 15 GeV to 100 GeV)
 - High luminosity $L > 10^{33}$ cm⁻² s⁻¹ per nucleon
 - Polarization of electron and proton spins
 - Preferably, two interaction regions with dedicated detectors.

RHIC	main case	option
Ring circumference [m]	3834	•
Number of bunches	360	
Beam rep-rate [MHz]	28.15	
Protons: number of bunches	360	120
Beam energy [GeV]	26 - 250	
Protons per bunch (max)	$2.0 \ i \ 10^{11}$	6 į 10 ¹¹
Normalized 96% emittance [µm]	14.5	
$\beta^*[m]$	0.26	
RMS Bunch length [m]	0.2	
Beam-beam tune shift in eRHIC	0.005	
Synchrotron tune, Qs	0.0028	
Gold ions: number of bunches	360	120
Beam energy [GeV/u]	50 - 100	
Ions per bunch (max)	$2.0 \ i \ 10^9$	$6 i 10^9$
Normalized 96% emittance [µm]	6	
$\beta^*[m]$	0.25	
RMS Bunch length [m]	0.2	
Beam-beam tune shift	0.005	
Synchrotron tune, Qs	0.0026	
Electrons:		
Beam rep-rate [MHz]	28.15	9.38
Beam energy [GeV]	2 - 10	
RMS normalized emittance [µm]	5- 50 for $N_e = 10^{10}$	$0^{0}/10^{11}\mathrm{e}^{-}$ per bunch
eta^*	~ 1 m, to fit beam-siz	ze of hadron beam
RMS Bunch length [m]	0.01	
Electrons per bunch	$0.1 - 1.0 \ i \ 10^{11}$	
Charge per bunch [nC]	1.6 Š 16	
Average e-beam current [A]	0.045 Š 0.45	0.015 Š 0.15

Luminosity is determined by the hadron beam!

$$L = f_c \frac{N_e N_h}{4 \pi \beta_h^* \varepsilon_h}$$

Round beams
$$\beta_e^* \varepsilon_e = \beta_h^* \varepsilon_h$$

$$L = \gamma_h \cdot (f_c \cdot N_h) \cdot \frac{\xi_h \cdot Z_h}{\beta_h^* \cdot r_h}$$

$$\xi_h = \frac{N_e}{\gamma_h} \frac{r_h}{4 \pi Z \varepsilon_h} = 0.007$$

Luminosity	Protons	Protons	Protons	Protons
10 ³³ cm ⁻² sec ⁻¹	26 GeV	50 GeV	100 GeV	250 GeV
Electrons 5(2)-10(20) GeV	0.28	0.52	0.96	2.8

Luminosity (per nucleus) 10^{31} cm ⁻² sec ⁻¹	Au 50 GeV/u	Au 100 GeV/u
Electrons 5(2)-10 GeV	1.4	2.8

Dedicate eRHIC mode with 250 GeV p or 100 GeV/u Au

$$\xi_h \to 0.024 \quad \Leftrightarrow \quad L_{pe} \to 1 \cdot 10^{34}$$

Advantages

- Usage of a fresh electron beam and absence of the memory in the e-beam
- > Practically waves the limitation on the tune shift in the IP and increase in the intensity of proton/ion beam
- Increase in luminosity by 2-to-10 fold
- Multiple Ips
- \triangleright Larger β *for e-beam and simplified IP geometry
 - > smaller e-beam emittance & smaller angular divergence in IP
 - > smaller aperture for e-beam
 - > no-need for e-beam quads in the detector area
 - possibility to focus e-beam after separating it for protons/ions
- Eeduced number of coupled bunch instability modes
- Absence of "prohibited" energies for the e-beam
- > Full spin-transparency of the system & high (>80%) degree of e-beam polarization at all energies
- > No need of preserving beam qualities (polarization, emittance...) after the IP(s)
 - > simple geometry of the return pass
 - > absence of spin-resonances
 - > possible multiple collisions (IPs)
- Usage of the linac (ERL) geometry
 - Easy adjustment the e-beam rep-rate to the beam rep-rate in the RHIC which significantly depends on the ion energy (equivalent change in circumference is ~ 3m);
 - > Easy future e-beam energy upgrades
 - > Possibility of using multiple energy collisions
 - \triangleright Possibility of 10 GeV γ -ray source and γ ion collider

Integration with IP

 $E_x = 12\sigma_{p,x} + 5\sigma_{e,x} + d$ septum= $12i \cdot 0.93$ mm + $5i \cdot 0.25$ mm + 10mm = 22.4mm.

- Round-beam collision geometry to maximize luminosity
- · Smaller e-beam emittance resulting in 10-fold smaller aperture requirements for the electron beam*
- · Possibility of moving the focusing quadrupoles for the ebeam outside the detector and the IP region, while leaving the dipoles used for separating the beam
- Possibility of further reducing the background of synchrotron radiation

Polarized electron gun and ERL spin transparency

Results of Parmela simulation for 1 nC e-bunch from the cathode to the end of the linac: black dashed curve is for a round beam passing without bends; blue curves are for a compensated chicane, red curves are for Zigzag merging system.

In contrast with <u>traditional chicane</u> where horizontal emittance suffers some growth as result of the bending trajectory, the \underline{Z} -system (zigzag) the emittances are equal to each other and are very close to that attainable for the straight pass.

RF accelerators

eRHIC - spontaneous radiation Very few facts

Energy	20	10	GeV
Βρ	666.67	333.33	kGs m
Loss per turn	35.40	2.21	MeV
Power	17.70	1.11	MW
λc (reg. bend)	0.28	2.24	Å
E ph critical (reg. bend)	44.35	5.54	KeV

Beam parameters

Energy	20	GeV		Energy	10	GeV	
γ	3.91E+04			γ	1.96E+04		
Circumference	3834	m		Circumference	3834.00	m	
R, average	610.20	m		R, average	610.20	m	
% fill	65.55%			% fill	65.55%		
R magnets	400.00	m		R magnets	400.00	m	
В	1.67	kGs		В	0.83	kGs	
N TBA cells	150.00			N cells	150.00		
$\epsilon_{ m norm}$	9.50E-07	m rad		ε norm	9.50E-07	m rad	
3	0.243	rad		3	0.485		
Bunchlength	from 0.1 to 2	psec		Bunchlength	from 0.1 to 2	psec	
Damping time	1.45E-02	sec		Damping time	1.16E-01	sec	
Revolution time	1.28E-05	sec		Revolution time	1.28E-05	sec	
$\Delta \varepsilon$ (TBA)	0.016	\square rad	6.70%	$\Delta \varepsilon$ (TBA)	0.001		0.10%
3	0.259	rad		ε	0.486		
RMS energy spread	2.54E-05			RMS energy spread	4.49E-06		

R&D ERL in bldg. 912

Conclusions: It is feasible - Needs R&D

- Wide range of collision energies (E_{cm} /nucleon from 15 GeV to 100+ GeV. e^{-} energy as low as 1 GeV as high as 30 GeV).
- High luminosity $0.034 \text{ cm}^{-2} \text{ s}^{-1}$ for high energy protons, $0.032 \text{ cm}^{-2} \text{ s}^{-1}$ for high energy Au ions.
- High degree of polarization (>80%) of the electrons at any energy, no forbidden energies.
- One, two, three ... interaction regions with dedicated detectors
- Energy of electron is simply upgradeable.
- · Reduction of synchrotron radiation in detector by cooling ions.
- No quadrupoles in detector.
- Simple compensation for ion velocity.
- Possibility of γ -ion collider.

Multi-bunch Instabilities

